
Lesson 13.

The principle of optimality and formulating DP recursions

0 Warm up

Example 1. Consider the following directed graph. �e labels on the edges are edge lengths.

1

2

3

4

5

6

7

8

2

2

1

5

3

1

6

34

5

1

5

3

In this order:

a. Find the shortest path from node 1 to node 8.

b. Find the shortest path from node 3 to node 8.

c. Find the shortest path from node 5 to node 8.

1 The principle of optimality

● In Example 1, we found that the shortest path from node 1 to node 8 is 1→ 3→ 5→ 6→ 7→ 8 with length 10

● Now, consider paths from node 3 to node 8

○ For example, 3→ 5→ 6→ 7→ 8 is such a path with length 8

● Could there be a shorter path from node 3 to node 8?

○ Suppose we had a path from 3 to 8 with length < 8

○ Consider edge (1, 3) + this path

⇒

SA367 Mathematical Models for Decision Making Spring 2017 Uhan 1



�e principle of optimality (for shortest path models)

In a directed graph with no negative cycles, optimal paths must have optimal subpaths.

● Consider a directed graph (N , E) with target node t ∈ N and edge lengths ci j for (i , j) ∈ E
● By the principle of optimality, the shortest path from node i to node t must be:

edge (i , j) + shortest path from j to t for some j ∈ N such that (i , j) ∈ E

● How can we exploit this?

● Let f (i) =

● �en we can write the following boundary conditions and recursion

● For example, in Example 1, f (5) is

2 Lesson 13. The principle of optimality and formulating DP recursions



2 Formulating DP recursions

● Dynamic programs are not usually given as shortest/longest path problems as we have done over the past few
lessons

● Instead, DPs are usually given as recursions

● Let’s revisit the following knapsack problem that we studied back in Lesson 7

Example 2. You are a thief deciding which precious metals to steal from a vault:

Metal Weight (kg) Value

1 Gold 3 11
2 Silver 2 7
3 Platinum 4 12

You have a knapsack that can hold at most 8kg. If you decide to take a particular metal, you must take all of it. Which
items should you take to maximize the value of your the�?

● We formulated the following dynamic program for this problem by giving the following longest path representa-
tion:

10

11

12

13

14

15

16

17

18

20

21

22

23

24

25

26

27

28

30

31

32

33

34

35

36

37

38

40

41

42

43

44

45

46

47

48

end

stage 1
take gold?

stage 2
take silver?

stage 3
take platinum?

stage 4
end

end

0

0

0

0

0

0

0

0

0

11
11

11
11

11
11

0

0

0

0

0

0

0

0

0

7

7

7

7

7

7

7

0

0

0

0

0

0

0

0

0

12
12

12
12

12

0
0

0

0

0

0

0

0
0

source

target

● Let’s formulate this as a dynamic program, but now by giving its recursion representation

● Let
wt = weight of metal t vt = value of metal t for t = 1, 2, 3

SA367 Mathematical Models for Decision Making Spring 2017 Uhan 3



● Stages:

● States:

● Allowable decisions xt at stage t and state n:

● Reward of decision xt at stage t and state n:

● Reward-to go function ft(n) at stage t and state n:

● Boundary conditions:

● Recursion:

● Desired reward-to-go function value:

4 Lesson 13. The principle of optimality and formulating DP recursions



● In general, to formulate a DP by giving its recursive representation:

Dynamic program – recursive representation

● Stages t = 1, 2, . . . , T and states n = 0, 1, 2, . . . ,N

● Allowable decisions xt at stage t and state n (t = 1, . . . , T − 1; n = 0, 1, . . . ,N)

● Cost of decision xt at stage t and state n (t = 1, . . . , T ; n = 0, 1, . . . ,N)

● Cost-to-go function ft(n) at stage t and state n (t = 1, . . . , T ; n = 0, 1, . . . ,N)

● Boundary conditions on fT(n) at state n (n = 0, 1, . . . ,N)

● Recursion on ft(n) at stage t and state n (t = 1, . . . , T − 1; n = 0, 1, . . . ,N)

ft(n) = min{(cost of decision at stage t) + ft+1(new state at stage t + 1)}

● Desired cost-to-go function value

3 Solving DP recursions

● To improve our understanding of how this recursive representation works, let’s solve the DP we just wrote for
the knapsack problem

● We solve the DP backwards:

○ start with the boundary conditions in stage T
○ compute values of the cost-to-go function ft(n) in stages T − 1, T − 2, . . . , 3, 2

○ . . .until we reach the desired cost-to-go function value

● Stage 4 computations – boundary conditions:

● Stage 3 computations:

f3(8) =

f3(7) =

f3(6) =

f3(5) =

f3(4) =

f3(3) =

SA367 Mathematical Models for Decision Making Spring 2017 Uhan 5



f3(2) =

f3(1) =

f3(0) =

● Stage 2 computations:

f2(8) =

f2(7) =

f2(6) =

f2(5) =

f2(4) =

f2(3) =

f2(2) =

f2(1) =

f2(0) =

● Stage 1 computations – desired cost-to-go function:

6 Lesson 13. The principle of optimality and formulating DP recursions


