Lesson 13. The principle of optimality and formulating DP recursions

0 Warm up

Example 1. Consider the following directed graph. The labels on the edges are edge lengths.

In this order:

- a. Find the shortest path from node 1 to node 8.
- b. Find the shortest path from node 3 to node 8.
- c. Find the shortest path from node 5 to node 8.

1 The principle of optimality

- In Example 1, we found that the shortest path from node 1 to node 8 is $1 \rightarrow 3 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8$ with length 10
- Now, consider paths from node 3 to node 8
 - $\circ~$ For example, 3 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 is such a path with length 8
- Could there be a shorter path from node 3 to node 8?
 - Suppose we had a path from 3 to 8 with length < 8
 - Consider edge (1, 3) + this path

The principle of optimality (for shortest path models)

In a directed graph with no negative cycles, optimal paths must have optimal subpaths.

- Consider a directed graph (N, E) with target node $t \in N$ and edge lengths c_{ij} for $(i, j) \in E$
- By the principle of optimality, the shortest path from node *i* to node *t* must be:

edge (i, j) + shortest path from j to t for some $j \in N$ such that $(i, j) \in E$

- How can we exploit this?
- Let *f*(*i*) =
- Then we can write the following **boundary conditions** and **recursion**

• For example, in Example 1, f(5) is

2 Formulating DP recursions

- Dynamic programs are not usually given as shortest/longest path problems as we have done over the past few lessons
- Instead, DPs are usually given as recursions
- Let's revisit the following knapsack problem that we studied back in Lesson 7

Example 2. You are a thief deciding which precious metals to steal from a vault:

	Metal	Weight (kg)	Value
1	Gold	3	11
2	Silver	2	7
3	Platinum	4	12

You have a knapsack that can hold at most 8kg. If you decide to take a particular metal, you must take all of it. Which items should you take to maximize the value of your theft?

• We formulated the following dynamic program for this problem by giving the following longest path representation:

- Let's formulate this as a dynamic program, but now by giving its recursion representation
- Let

```
w_t = weight of metal t v_t = value of metal t for t = 1, 2, 3
```

- Stages:
- States:
- Allowable decisions *x*_t at stage *t* and state *n*:

- Reward of decision x_t at stage t and state n:
- Reward-to go function $f_t(n)$ at stage *t* and state *n*:
- Boundary conditions:
- Recursion:

• Desired reward-to-go function value:

• In general, to formulate a DP by giving its recursive representation:

Dynamic program – recursive representation

- Stages t = 1, 2, ..., T and states n = 0, 1, 2, ..., N
- Allowable decisions x_t at stage t and state n (t = 1, ..., T 1; n = 0, 1, ..., N)
 Cost of decision x_t at stage t and state n (t = 1, ..., T; n = 0, 1, ..., N)
 Cost-to-go function f_t(n) at stage t and state n (t = 1, ..., T; n = 0, 1, ..., N)
 Boundary conditions on f_T(n) at state n (n = 0, 1, ..., N)
 Recursion on f_t(n) at stage t and state n (t = 1, ..., T 1; n = 0, 1, ..., N)
 f_t(n) = min {(cost of decision at stage t) + f_{t+1}(new state at stage t + 1)}
- Desired cost-to-go function value

3 Solving DP recursions

- To improve our understanding of how this recursive representation works, let's solve the DP we just wrote for the knapsack problem
- We solve the DP backwards:
 - \circ start with the boundary conditions in stage *T*
 - compute values of the cost-to-go function $f_t(n)$ in stages T 1, T 2, ..., 3, 2
 - $\circ \ \ldots$ until we reach the desired cost-to-go function value
- Stage 4 computations boundary conditions:
- Stage 3 computations:

$f_3(2) =$	
<i>f</i> ₃ (1) =	
$f_3(0) =$	

• Stage 2 computations:

• Stage 1 computations – desired cost-to-go function: