Lesson 13.

The principle of optimality and formulating DP recursions

0 Warmup
Example 1. Consider the following directed graph. The labels on the edges are edge lengths.

In this order:

a. Find the shortest path from node 1 to node 8.

b. Find the shortest path from node 3 to node 8.

c. Find the shortest path from node 5 to node 8.

1 The principle of optimality

e In Example 1, we found that the shortest path from node 1 to node 8is1 -3 — 5 - 6 — 7 — 8 with length 10

¢ Now;, consider paths from node 3 to node 8
o For example, 3 -5 — 6 - 7 — 8 is such a path with length 8
e Could there be a shorter path from node 3 to node 8?2

o Suppose we had a path from 3 to 8 with length < 8
o Consider edge (1,3) + this path

SA367 - Mathematical Models for Decision Making - Spring 2017 - Uhan



The principle of optimality (for shortest path models)

In a directed graph with no negative cycles, optimal paths must have optimal subpaths.

» Consider a directed graph (N, E) with target node t € N and edge lengths c;; for (i, j) € E

o By the principle of optimality, the shortest path from node i to node ¢t must be:

edge (i, j) + shortest path from j to ¢ for some j € N such that (i, j) € E

e How can we exploit this?

o Let f(i)=

e Then we can write the following boundary conditions and recursion

e For example, in Example 1, f(5) is

Lesson 13. The principle of optimality and formulating DP recursions



2 Formulating DP recursions

e Dynamic programs are not usually given as shortest/longest path problems as we have done over the past few
lessons

e Instead, DPs are usually given as recursions

e Let’s revisit the following knapsack problem that we studied back in Lesson 7

Example 2. You are a thief deciding which precious metals to steal from a vault:

Metal Weight (kg) Value

1 Gold 3 1
2 Silver 2 7
3 Platinum 4 12

You have a knapsack that can hold at most 8kg. If you decide to take a particular metal, you must take all of it. Which
items should you take to maximize the value of your theft?

e We formulated the following dynamic program for this problem by giving the following longest path representa-

tion:
source
5
“
0
- )
0 end | target
:
© Q
Q
Q
N
stage 2 stage 3 stage 4
take gold? take silver? take platinum? end

e Lets formulate this as a dynamic program, but now by giving its recursion representation

o Let
w; = weight of metal ¢ v; = value of metal ¢ fort=1,2,3

SA367 - Mathematical Models for Decision Making - Spring 2017 - Uhan 3



e Stages:

o States:

e Allowable decisions x; at stage ¢ and state n:

Reward of decision x; at stage ¢ and state n:

Reward-to go function f;(n) at stage t and state n:

Boundary conditions:

e Recursion:

e Desired reward-to-go function value:

Lesson 13. The principle of optimality and formulating DP recursions



e In general, to formulate a DP by giving its recursive representation:

Dynamic program - recursive representation

Stages t =1,2,..., T and states n = 0,1,2,..., N

Allowable decisions x; at stage ¢ and state n (t=1,...,T-1;n=0,1,...,N)
Cost of decision x; at stage ¢ and state n (t=1,...,T;n=0,1,...,N)
Cost-to-go function f;(n) at stage t and state n (t=1,...,T;n=0,1,...,N)
Boundary conditions on fr(n) at state n (n=0,1,...,N)

Recursion on f;(n) at stage ¢ and state n (t=1,...,T-L,n=0,1,...,N)

fi(n) = min {(cost of decision at stage t) + f;1(new state at stage ¢ +1) }

Desired cost-to-go function value

3 Solving DP recursions

e To improve our understanding of how this recursive representation works, let’s solve the DP we just wrote for
the knapsack problem

e We solve the DP backwards:

o start with the boundary conditions in stage T
o compute values of the cost-to-go function f;(n) in stages T -1, T -2,...,3,2

o ...until we reach the desired cost-to-go function value

e Stage 4 computations — boundary conditions:

e Stage 3 computations:

f(8) =
f(7) =
f(6) =
f(5) =
f(4) =

£(3) =

SA367 - Mathematical Models for Decision Making - Spring 2017 - Uhan 5



f(2) =
f(1) =
f3(0) =
e Stage 2 computations:
f(8) =
f(7) =
f(6) =
f2(5) =
f(4) =
£(3) =
f(2) =
f(1) =
f2(0) =

e Stage 1 computations — desired cost-to-go function:

Lesson 13. The principle of optimality and formulating DP recursions



